
EDS take home exam
2IMD10 Engineering Data-Intensive Systems

J. L. J. M. Serlier
1645757

I. QUESTION 1

There is no doubt that world’s data ingestion increases
exponentially and, therefore, there is an urgent need for
scalable data processing platforms. However, there is a big
question on how to scale? Should we scale-up by adding
more cores to a single machine or scale-out by adding
more machines? Both approaches have their advantages
and shortcomings. Which approach should be taken in the
context of graph query processing? Present your argument
by considering latest research in query processing, emerging
hardware trends, and common workloads in different
application domains.

When considering question of scale-up (vertical scaling)
vs. scale-out (horizontal scaling) in traditional relational
database environment, it seems that industry leaders in cloud
storage solutions (Azure, AWS, Google Cloud Services) push
their customers toward an approach where scaling out is
the prominent answer. Arguments follow that scaling up is
seen as trying to solve problems by ’buying a bigger box’,
but outward scaling is flexible and fits modern architecture
paradigms better. However, both approaches do see their fit,
depending on the client’s needs. For example, Yap (a solution
architect at AWS) argues that horizontal scaling works well
for distributing read-heavy oriented databases as seen in
figure 1, whereas up-scaling will be more beneficial when
on-demand resources are needed on a single instance [1].
Modern techniques in cloud computing use a combination
of scale-out and scale-up techniques in combination with
flexible auto-scaling and load balancing depending on on the
need for resource availability and performance [2].

Considering the same question for graph query processing
specifically, the academic discussion on scale-out versus
scale-up has, interestingly enough, been led by two parties
from the University of Waterloo with conflicting views. In
the paper Scale Up or Scale Out for Graph Processing?
[3], Lin steadfastly argues scale up is the sensible viable
option for graph processing, unless distributed solutions are
unequivocally necessary to the organisation. His argument
stems from his experience as an Engineer at Twitter where
a ’simple’ scale-up solution worked as the increase size
of the graph dataset would not outpace Moore’s Law (in
this case loosely used as a term for computer capabilities).
When met with the seemingly valid argument that industry

Fig. 1: Modern solution to load balancing EC2 instances using
a scale-out method to increase availability [1]

hasn’t considered or implemented scale-up as enthusiastically
as they do so for scale-out, he argues that this is due to
the echo-chambering effect of buzzwords in the likes of
”scale-out is the only way” and ”no single point of failure”.

A few months later a response followed written by
Salihoglu and Özsu [4], colleagues of Lin from the University
of Watlerloo’s Data Systems Group. Lin’s colleagues agree
with him that for many organizations running analytical
calculations on a single machine (scaled-up) is more practical
than running a distributed system. After this statement of
agreement, their sentiments quickly diverge. Salihoglu and
Özsu follow up with arguments considering common three
cases where scale-out is a more practical and rational choice
for scaling graph analytics. The first two fall within the same
argument: graphs can naturally exceed the size which Lin
considered in his anecdote and paper. This is either due to
the nature of their domain (’Trillion-edge-size graphs’ such
as those in finance, e-commerce, ...) or due to the fact that
extracted graphs are usually part of a much larger graph.
The third case mentions that more complex computations
necessitate scale-out, as even though the initial graph can
fit in main memory of a single machine, the computations
require multiple machines at work.

An illustrative example of the extent of the graph size
issue is something which the authors call the ’blow-up’ factor.
Although the raw dataset might be relatively small, when
the data is processed overhead is created in RAM due to

the internal data structures. Figure 2 shows the results from
experimentation performed in the response paper.

Fig. 2: Graph size ’blow-up’ factor after loading in [4]

Conclusion. Although the authors from both sides disagree
on many points, the arguments where they meet common
ground shows the nuance which is essential in order to answer
the scale-up versus scale-out question. The basic requirements
in modern (cloud-) computing solutions are accessibility, re-
liability and scalability. If the graph size of your application
is able to be loaded in a single machine, as well as allow for
enough room for the complex computations to be performed,
scale-up is the way to go in terms of scalability. Lin is correct
in mentioning Moore’s Law in this sense, as the rate of
growth of the graph data should remain less than the rate
of growth ’capacity’ of the computers which process them.
When running on a single machine, one should take into
account that accessibility and reliability are still key. For many,
many organizations this means that scale-up is a reasonable,
viable and cost-efficient solution for approaching the scaling
question in regards to graph query processing. Industry’s focus
towards scale-out can be essential to solve practical problems
in terms of reliability and accessibility, as well as scalability,
but at the cost of more complex architectures and increased
financial costs. For a small portion of organization, mainly
data-driven organizations where accessibility to data and query
information is key, scaling up is an approach which should be
taken seriously. As both academics and industry leaders keep
innovating in this field, scale-out is becoming a more viable
and cost-efficient solution. Finally, organizations for which the
graph-size is simply too large, or the ’blow-up’ factor and
computations too complex to be (practically) dealt with on
a single machine, will have to consider scaling out as their
approach of choice.

II. QUESTION 2

Consider the general problem of estimating the number of
distinct tuples obtained after applying a projection operator
ΠX(R(Y)) on an arbitrary table R(Y), s.t. X ⊆ Y . How
would you perform such an estimation? Give an estimation
approach and its analysis.

Cardinality estimation is key for cost-based query
optimizing. By efficiently being able to estimate the resulting
size of a query, one is able to selectively order predicates when
comparing execution plans of a query. For this problem, we

are specifically interested in finding a cardinality estimation
for a projection. In the relatively old but still relevant paper
On Estimating the Cardinality of the Projection of a Database
Relation [5], R. Ahad attempts to tackle this problem by
means of incorporating data semantics.

In the paper, they compare their work to that of Merrett
and Otoo [6]. Merrett and Otoo estimate the cardinality of the
output by means of modeling the distribution of the tuples in
the relation in n dimensional space, where n is the amount of
tuples. Their key assumptions are that tuples are assumed to
be uniformly distributed in the sector space shown in figure
3, and that tuples sampled from the population are selected
without replacement.

Fig. 3: Tuple distribution of R(A, B) [5]

Using this distribution model, the expected number of tuples
of projection over B of the set of tuples Rb whose base is some
sector b of B is:

E (|RB [B]|) = n

1−
|Rb|∏
i=1

1− k

nk − (i− 1)

 (1)

Where n is the number of values per sector and k is the
number of A values.

R. Ahad continues improves upon this estimation by
assuming certain a-priori knowledge of the relationships in
the relational database is available. Altough our problem
settings mentions we apply the projection over an arbitrary
table, gaining a-priori knowledge could feasibly be done
on arbitrary tables, for instance using sampling methods.
An notable improvement is that the new formula does not
require a scan over the relation. An assumption is made
that there exist no duplicate tuples in the original relational
model. Altough duplicity in the original relation is technically
allowed, it will make the estimation less accurate. A flaw
in the formulated equation was later removed in A Note on
Estimating the Cardinality of the Projection of a Database
Relation [7]. Therefore, I will describe the improved formula:

Let R‘(A,B) be a relation with attributes A and B. We
use |Dom(A)| = m and |Dom(B)| = n, and assume (our
a-priori-assumption) that for any R‘, the distinct values a ∈ A
where also a ∈ B is p, and the distinct values b ∈ B where

also b ∈ A is q. Then let Q be the unary relation of k distinct
A values. Finally, let R be the natural join of Q and R‘. Then
we have:

Es (|R[B]|) = n

(
1−

(
m−p
k

)(
m
k

)) (2)

As mentioned, for our problem, we consider applying
a projection on an arbitrary table. Therefore, we cannot
conclusively say we have any a-priori knowledge regarding
the relational data. In many cases however, we are able to use
sampling and statistical techniques to gain a-priori insights
which are needed for the assumptions of p and q in the
improved estimator. A practical approach to this can be found
in in Random Sampling for Histogram Construction: How
much is enough? [8]. By accurately using these histograms, a
query plan optimizer can make better choices for the execution
plan. Statistics from these histograms can also be used as
the a-priori knowledge required for the improved formula 2.
Various other methods are also possible to efficiently used
samlping and statistical methods in order to gain knowledge
about the relations an arbitrary table, for instance those
described in the book Database Management Systrems [9].
Lastly, I wanted to mention that a paper by Naughton and
Seshadri which show a more algorithmic approach to solving
our problem [10], which is interesting for practical scenario’s
but a bit out of scope for our question.

Conclusion. Using either of the two formula’s, an effective
cardinality estimation of a projection on an arbitrary relation
can be performed. This allows us to compare execution plans
and thereby improve query evalutation times. If we have no
a-priori Merrett and Otoo’s formula can be applied. Alter-
natively, using a-priori beforehand knowledge or sampling
methods, the improved version of the algorithm (equation 2)
can be used which is slightly more accurate under certain
conditions. Although these formula’s are quite old, they are
not dated as they are still used in practice today. Therefore,
they are a fitting solution to our problem.

III. QUESTION 3

Consider building a database for (a better version of)
G**gle Maps. Consider a spatial user query in which you
are required to return top-K points-of-interest (POIs) nearest
to the current (given) location. Describe how would you
design such a database and how would you efficiently execute
such queries? I am looking for time/memory efficient solutions.

I will answer this question by proposing multiple solutions
and comparing their advantages and disadvantages in terms
of time and space complexity, as well as general feasibility.

First, let’s consider some assumptions; on a small-scale, a
spatial datapoint is just an ’x’ and ’y’ value on which you
can index your results. As you consider a larger area, the
curvature of the earth is not negligible. Two datapoints then
represent a curved line in 3-d space. There are a multitude

of ways to deal with this, but the easiest is to just stick with
existing google’s datalayer conventions [11] and assume we
use longitude and latitude. Therefore, I make the assumption
that longitude and latitude data is processed with any of the
existing frameworks before the spatial query is evaluated in
the database.

Taking this into account, my first intuition was to make
sure that a user’s query was ’tackled’ in a divide-and-conquer
approach, as this will make the runtime of the query evalu-
ation logarithmic (assuming the data is stored in a tree-like
format). I discussed this approach with a colleague studying
Geomatics at TU Delft who recommended the unpublished
book Computational modelling of terrains [12]. In chapter 10,
the construction of a kd-tree is discussed as an efficient option
to tackle spatial nearest neighbour queries. Interestingly, this
is able to deal with 3 dimensional queries as well as the 2
dimensional queries we are interested in. By traversing the tree
depth-first and using the tree properties, large parts of the tree
can be eliminated. For a single nearest neighbour query, the
closest point to the user is simply stored in a temp variable
Ctemp. Expanding this to an N-nearest neighbour query,
we can simply maintain the N closest points instead. During
the traversal, the order is that of the N ”most promising”
nodes, at each iteration updating the Ctempi

nodes using the
Euclidean distances where needed. Other sub-trees should
also be considered and are visited recursively, and trees are
eliminated as soon as the distance of the furthest point in
Ctemp is further away than the ’bounding box’, which are
indicated as the semi-squares in the figure 4. This figure shows
the several states a kd-tree (with k=2) goes through when
finding a single nearest neighbour.

Fig. 4: States of finding a single nearest neighbour in in a
kd-tree (R2), order: a - d [12]

The construction of the kd-tree can be done efficiently in
real-world scenario’s by creating a balanced tree (desirable
due to quicker searches) using the estimated or sampled
median of a subset (1% is mentioned in the book) of the
graph to split the nodes in the graph. The tree is built by
inserting a node one at the time by traversing the tree based
on the splitting dimension, in this case the spatial index.The
time complexity of this algorithm is O(logn) for insertion

and lookup, and the space complexity is O(n).

The highly influential paper Nearest neighbor queries
by Roussopoulos et al. proposes the use of R-trees in
order to find the (k) nearest neighbours to an object and
introduces a branch-and-bound traversal algorithm for solving
our problem. An R-tree groups nearby objects within a
minimum bounding rectangle, which are used to define the
tree hierarchy structure. This is visualized in figure 5. In
comparison to the kd-tree previously discussed, an R-tree
is disk-oriented, meaning they map their data to a disk
representation which makes them more practical in real-life
scenario’s. Huang et al discusses how to optimize storing
such trees for dynamically indexed spatial databases [13]. The
compact R-tree can achieve high levels of storage utilization
while still maintaining all relevant properties. The R-tree and
its variants allow for efficient query lookup and insertion
(average O(logmn) and worst case O(n)), and a space
complexity of O(logn) [14]. As R-Trees are balanced, they
are more suitable for cases where we would need to keep
adding new points of interest. In general, the literature seemed
to indicate that R-tree’s and its variants are most suitable
for real-world applications for a K-nearest-neighbour problem.

Conclusion. We have discussed two promising data-
structures which allow to efficiently execute spatial queries
where a user requests the top-k points of interest near to
the user. These can both be used as the foundational design
of our databases. To fully answer the question we should
consider how these data-structures can be applied in order to
efficiently execute the spatial user queries. As R-trees have
been shown to be more practical, I will consider this data-
structure. Practically designing a database for the use of R-
trees and querying is straightforward. Various cloud providers
offer services where R-trees can be used as the foundation,
such as IBM’s Informix service, offering a fully working R-
tree implementation. This service only has 20 bytes overhead
for each page (e.g. a bounding-box or a range of POI’s) of
the R-tree (leaf, branch or root) [15]. Such a service could be
the foundation of our database. Other optimization methods
could also be considered, for instance caching certain pages
that contain data-points from a certain area closer to the user.
For instance, users from the EU might have pages containing
POI’s near them cached in a datacenter close to the user (e.g.
in Frankfurt). This concludes the efficient design of a top-K
points of interest database.

IV. QUESTION 4

Consider a simple shortest-path reachability query Q(s, t).
Evaluation of Q on a directed graph G ([[Q]]G) returns
the length of a shortest path p if t is reachable from s by
following p in G, and returns “-1” otherwise. How would
you perform evaluation [[Q]]G efficiently given Q(s, t) and
G, both in time and in space? I am looking for solutions
faster than an online search algorithm like Dijkstra’s and
more memory efficient than offline computation of the whole

Fig. 5: Hierachy of spatial objects in an R-tree showcasing the
bounding rectangles [13]

(shortest-path) transitive closure of G. Consider the latest
research on this topic, justify your solution and document all
of your assumptions

As I have personal experience in dealing with a similar
problem, I will start off by discussing my experience in
dealing with Dijkstra’s optimizations and I how tackled it.
Afterward, I will dive into more theoretical (academic) as
well as modern practical approaches. The assumptions I make
for answering this question is that I will not consider purely
’scaling’ optimizations such as parallelizing, since I feel like
this is not in the spirit of the question. Lastly, I will use
the term ’user’ as an entity which requests queries, but this
can be interpreted as any entity which requires the query result.

The efficiency of the implementation of Dijkstra’s
algorithm and optimizing it is a billion dollar industry
question. Interestingly enough, the algorithm itself is quite
optimal at a worst-case performance of Θ(|E|+ |V | log |V |)
in terms of its vertices V and edges E. Even still, there are
ways that for real-world applications this can be practically
sped up. The problem at hand simply asks whether or not
two nodes of a query Q(s, t) are connected, and if so,
what the length of the shortest path is. The simplest way to
investigate whether or not two vertices are connected is to
construct the transitive closure of the graph. The transitive
closure of a graph is a graph itself which contains edges
from each node to every node which it is able to reach via
existing edges in the original graph, making it useful for
this scenario. However, this is quite computationally heavy.
The Floyd-Warshall algorithm for computing the distance
between all pairs of vertices has similar benefits and issues,
as it allows for pre-computing the shortests paths efficiently
but at a high upfront computational cost. Since we will not
be computing the full transitive closure or all shortest paths

of the graph, I will instead answer the question by looking at
methods to improve shortest path querying.

For my Bachelor’s final project, I had to tackle a relevant
problem to this question. Considering I was working together
with researchers from TU-Delft, I believe my approach is
justifiable up-to-date. I was investigating the effect of timing
of disruption events on the London underground network.
This means I had to compute a large amount of shortest
paths between all the vertices in the network for various
scenario’s. The assumptions I made was that a disruption
event would effectively ’remove’ and edge from the network,
and passengers would follow the next-available shortest path
which allowed them to reach their final destination. This
approach allowed me to estimate the increased strain on
particular parts in the network as disruption events occur
throughout the day. In case you are interested, you can find
more about the project on my website. As I was investigating
the impact over all the edges in the network, I would
have to calculate an enormous amount of shortest paths if
I did think about optimizations. Since I was running the
computations on an AWS EC2 instance, I was eager to reduce
the computational and financial costs of this. Apart from
the relatively uninteresting approach of multi-processing, I
found out that caching the shortest paths of the undisrupted
(full) network worked quite well. After a disruption event, I
simply had to check whether or not a shortest path between
two vertices contains the disrupted edge and recompute that
shortest edge if that was indeed the case. Disrupting edges
with a low betweenness centrality (a centrality measure based
on how many shortest paths contain that edge) therefore
required very little additional computation.

Practical approach for the shortest-path reachability
problem: For our problem, we are not looking to pre-compute
all shortest paths of the network, but a similar approach of
caching could be very beneficial. I suggest first trying to
gauge which queries will come up often, which is of course
heavily dependent on the use case of the graph database at
hand. For instance, we could generate plausible queries and
cache N amount of shortest paths. These would be indexed
on the vertexes, sorting and keeping track of the amount of
times they are retrieved, starting at 0. We can then use this
as a baseline ’cache’ storage. As actual queries start being
requested, we can lookup in the cache to see if the index
Q(s, t) exists in the cache. If not, we compute the shortest
path and add it (or ”-1” if there exists no shortest path) to
the cache, as long as there is still space in the cache left for
a new path. It is important to keep in mind what happens
if user behavior changes, meaning they will start requesting
different queries. In case the frequent queries change and we
have a ’dropout’ threshold in the cache based on the amount
of retrievals, newer queries that might be relevant to users
will not be cached. Therefore, to counteract this, the bottom
Z cached paths should be dropped periodically. The choice
of the number of saved shortest paths N and the dropout Z

are values which need to be experimented with, but coming
up with a reasonable number based on the graph size and the
query frequencies is straightforward.

The increased efficiency of the approach above is mainly
dependent on the frequency distribution of the queries which
are requested. If the distribution is heavily skewed in favor
of certain queries, this approach becomes more efficient.
Although the cache C is sorted by request frequency, the
worst runtime complexity of checking if a path is cached
for a vertex pair could reasonably be assumed to be O(N)
where N is the cache size, and will be quicker for queries
which are more frequent. However, this will be practically
negligible compared to computing the shortest path again in a
practical scenario. This means that for Q(s, t) where the pair
(s, t) ∈ C the runtime will be O(N), and for (s, t) /∈ C it will
be O(|E|+ |V | log |V |+ N). Assuming certain queries are
more popular than others, this is a significant improvement
in terms of computational complexity compared to online
Dijkstra’s, as well as to computing the transitive closure.

Most of what I have written above is from personal
experience and intuition and will serve as a practical
approach to solving the problem. I will finish this section by
performing a broef literature study about other methods used
in industry and academics. In TEDI: Efficient Shortest Path
Query Answering on Graphs [16] a method is considered
where the shortest path query problem is sped up by using
TEDI: Tree Decomposition based Indexing. Although this
is an interesting and practical approach, one effectively has
to pre-compute every shortest path in the decomposed bags
of trees. In Optimizing Dijkstra for real-world performance,
Aviram and Shavitt implement a Que implementation which
speeds up the runtime of Dijkstra’s in real-world and
synthetic graphs substantially. Using their method, they
bound the runtime to O(E + U) where U is the distance
of the vertex farthest from the starting vertex. When we
have usable heuristics about the graph, we can use the A*
algorithm instead of Dijkstra’s algorithm, which is a classic
goal-directed searching algorithm [17].

Lastly, The survey Route Planning in Transportation
Networks [18] is a very in-depth practical survey from
engineers from Industry and academics showing many
interesting methods for solving shortest-path queries in a
practical real life setting. Unfortunately, I only found this
source very late, as it is exceptionally thorough and in-depth
in it’s many optimizations which could be useful for our
problem. Examples are:

1) Precomputing distances within clusters in the graph
which are separated by ’cut arcs’. This works on the
principle that partial Dijksta’s can be used to construct
a full shortest paths for certain (sub)-graphs (image 6).

2) Separator-band techniques which can be used to preserve
’shortcuts’ in a subgraph over which Dijkstra’s can be

https://jakobs.dev

run
3) Hierarchical techniques which assume that the further

away one is from the source and target nodes, the less
vertices it has to consider in the (sub)graph. This is a
very effiecent technique for certain real-life graphs, but
it does not always return the optimally shortest path.

The paper goes on to showcase various methods to implement-
ing these and other techniques, as well as ranking them on in
a practical manner.

Fig. 6: Left: Multilevel overlay graph with two levels. The
dots depict separator vertices in the lower and upper level.
Right: Overlay graph constructed from arc separators. Each
cell contains a full clique between its boundary vertices, and
cut arcs are thicker. From: [18]

.

Conclusion. For this question, I have given you insights
coming from my personal experience in dealing with the
shortest path problem. The in-depth method I have detailed
is based on an approach used for a previous research project,
and should fit the constraints quite well of being more efficient
than pure Dijkstra’s and more memory efficient than the full
Transitive Closure. In addition, I have detailed some of the
literature I came across which showcase both academic and
practical solutions to similar problems which could be used as
effective means to solving the problem of the question.

V. QUESTION 5

The problem of subgraph isomorphism is known to be
NP-complete. NP-complete problems are considered to be
intractable (of course, up until somebody shows P = NP). Yet,
“efficient” practical solutions for “real-world” workloads
exist for subgraph query matching, e.g., by employing query
languages like SQL, SPARQL, and Cypher. What is the trick,
then? Please carefully explain what is going on.

The graph isomorphism problem is one of the more
prominent NP-complete problems in computer science.
It gained traction in the 1950’s for matching molecular
graphs, and has become more and more relevant in computer
science as we have become dependent on solving complex
computations in large graph data-structures and databases.
In this section, I will cover the basic theory behind graph
isomorphisms, after which I will dive deeper into the practical
side of things; how is the graph isomorphism solved in real-

world scenarios?

Two graphs G = (V,E) and H = (W,F) are said to be
isomorphic if there exists a mapping of any of the vertices in
V to the vertices in W such that ∀v, w ∈ V , with f : V −→W
we have {v, w} ∈ E ⇐⇒ {f(v), f(w)} ∈ F . This means
adjacency is preserved for all vertices after the mapping.
This is visualized in figure 7. Only recently in 2016, Babei
showed that isomorphic testing can actually be performed
in quasipolynomial time, with the time complexity being
NP (logn) where n is the number of vertixes in the graph and
P is some polynomial [19]. In a review article of the graph
isomorphism problem, Grohe and Schweizer interpret this
as ”being almost efficiently solvable— theoretically” [20].
However, how is this problem tackled in real-world scenarios?

It is key to understand that the complexity of the graph
isomorphism problem is heavily dependent on the type of
graph one is dealing with. For instance, Hopcroft and Tarjan
showed early on that a planar graph, meaning a graph that
can be drawn on a surface without intersecting edges, can be
solved in O(nlogn) time. A similar feat was shown in the
guest lecture of this course given by George Fletcher, where,
for acyclic cases, we are able to solve the query problem
in polynomial time. This means that a subset of the graph
isomorphism problem are cases which are tractable.

Diving deeper into the tractability of graph isomorphims,
Gottlob et al. discusses methods of identifying so called
’islands of tractability’ for problems considering their
graph topology [21]. As previously stated, acyclic structural
problem are tracable, but ones which are nearly acylic can
also be dealt with using structual decomposition methods,
specifically the hypertree decomposition method. A (hyper-
)tree decomposition maps a graph into a tree, where the
tree width is the minimum width of any tree decomposing
the graph. An example is shown in figure 8. Using this
decomposition allows for solving certain computational
problems on a graph much more efficiently. Among the
points in made in their conclusion, the one which stands
out is the comment underlining the ubiquity of real-life
problems which show sparse tree-like structures with dense
local cyclic structures. Here lies the key in answering the
question at hand: one can project the local cyclic clusters
into subproblems which are relatively easily to solve on their
own. Research on this subject is still very much ongoing. For
instance, in 2020, Ganian et al. introduces a new method of
bounding treewidth of hypertrees allowing for fixed parameter
tractability [22].

Conclusion. Although the graph isomorphism problem
is NP-complete, depending on the shape of the underlying
graph, the problem is practically tractable in many cases. Real-
life graph datasets often have sparse tree-like structure with
local cyclic clusters. Using various decomposition techniques,
solving this problem for ”real-world” workloads is feasible

and practical. For instance, in H-DB: a hybrid quantitative-
structural sql optimizer [23] it is shown that structural de-
composition can be used for optimizing SQL queries for
(near-)acyclic queries. In a paper written by Mhedhbi and
Salihoglu it is shown that tree decompositions are used in order
to optimize queries for Graphflow DBMS, which supports
a subset of the Cypher language [24]. In a more academic
setting, Wang et al. showed that subgraph matching on large
RDF graphs is possible using a star-based decomposition
method [25]. Conclusively, for the graph isomorphism problem
in relation to real-life query languages, it is often possible
to transform the problem in one for which we can create a
much tighter bound while still being able to achieve the desired
results of the query.

Fig. 7: Four isomorphic graphs shown by the ability to remap
vertexes while maintaining adjacency [20]

Fig. 8: A hypergraph H , a tree decomposition for its primal
graph, and a width-2 hypertree decomposition for H [21]

REFERENCES

[1] Yap. Scaling your amazon rds instance vertically and horizontally, 2016.
[2] Kai Hwang, Yue Shi, and Xiaoying Bai. Scale-out vs. scale-up

techniques for cloud performance and productivity. In 2014 IEEE 6th
International Conference on Cloud Computing Technology and Science,
pages 763–768. IEEE, 2014.

[3] Jimmy Lin. Scale up or scale out for graph processing? IEEE Internet
Computing, 22(3):72–78, 2018.

[4] S. Salihoglu and M. T. Özsu. Response to “scale up or scale out for
graph processing”. IEEE Internet Computing, 22(5):18–24, 2018.

[5] Rafiul Ahad, K. V. Bapa, and Dennis McLeod. On estimating the
cardinality of the projection of a database relation. ACM Trans. Database
Syst., 14(1):28–40, March 1989.

[6] TH Merrett and Ekow Otoo. Distribution models of relations. In Fifth
International Conference on Very Large Data Bases, 1979., pages 418–
425. IEEE, 1979.

[7] Ravi Mukkamala and Sushil Jajodia. A note on estimating the cardinality
of the projection of a database relation. ACM Trans. Database Syst.,
16(3):564–566, September 1991.

[8] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random
sampling for histogram construction. ACM SIGMOD Record, 27(2):436–
447, June 1998.

[9] Raghu Ramakrishnan and Johannes Gehrke. Database management
systems. McGraw-Hill, 2000.

[10] Jeffrey F. Naughton and S. Seshadri. On estimating the size of projec-
tions. In Serge Abiteboul and Paris C. Kanellakis, editors, ICDT ’90,
pages 499–513, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

[11] The google maps data layer. https://developers.google.com/maps/
documentation/javascript/datalayer, 2020.

[12] Ravi Peters Hugo Ledoux, Ken Arroyo Ohori. Computational modelling
of terrains. https://github.com/tudelft3d/terrainbook/releases, 2020.

[13] Po-Whei Huang, Phen-Lan Lin, and HY Lin. Optimizing storage
utilization in r-tree dynamic index structure for spatial databases. Journal
of Systems and Software, 55(3):291–299, 2001.

[14] Rajendra Prasad Mahapatra and Partha Sarathi Chakraborty. Compara-
tive analysis of nearest neighbor query processing techniques. Procedia
Computer Science, 57:1289–1298, 2015.

[15] Ibm informix r-tree index user’s guide, Apr 2008.
[16] Fang Wei. TEDI. In Advances in Data Mining and Database

Management, pages 214–238. IGI Global.
[17] Akshay Kumar Guruji, Himansh Agarwal, and D.K. Parsediya. Time-

efficient a* algorithm for robot path planning. Procedia Technology,
23:144–149, 2016. 3rd International Conference on Innovations in
Automation and Mechatronics Engineering 2016, ICIAME 2016 05-06
February, 2016.

[18] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Re-
nato F. Werneck. Route planning in transportation networks. CoRR,
abs/1504.05140, 2015.

[19] László Babai. Graph isomorphism in quasipolynomial time [extended
abstract]. In Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, page 684–697, New York, NY,
USA, 2016. Association for Computing Machinery.

[20] Martin Grohe and Pascal Schweitzer. The graph isomorphism problem.
Commun. ACM, 63(11):128–134, October 2020.

[21] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Treewidth and
hypertree width. Tractability: Practical Approaches to Hard Problems,
1, 2014.

[22] Robert Ganian, André Schidler, Manuel Sorge, and Stefan Szeider.
Threshold treewidth and hypertree width. In IJCAI, 2020.

[23] Lucantonio Ghionna, Gianluigi Greco, and Francesco Scarcello. H-
db: A hybrid quantitative-structural sql optimizer. In Proceedings of
the 20th ACM International Conference on Information and Knowledge
Management, CIKM ’11, page 2573–2576, New York, NY, USA, 2011.
Association for Computing Machinery.

[24] Amine Mhedhbi and Semih Salihoglu. Optimizing subgraph queries by
combining binary and worst-case optimal joins, 2019.

[25] Xin Wang, Lele Chai, Qiang Xu, Yajun Yang, Jianxin Li, Junhu Wang,
and Yunpeng Chai. Efficient subgraph matching on large RDF graphs
using MapReduce. Data Science and Engineering, 4(1):24–43, March
2019.

https://developers.google.com/maps/documentation/javascript/datalayer
https://developers.google.com/maps/documentation/javascript/datalayer
https://github.com/tudelft3d/terrainbook/releases

	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	References

