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Figure 0: Changing impact of disruption events on capacity utilization for different timeslots 

  



 

 

1. Abstract  

The motivation behind this study is to explore the importance of disruption time in public 

transport network resilience, and how to measure the changing impact over time. We have 

proposed a methodology to model a non-cascading time-dependent network model, estimating 

changing passenger loads in a public transport network. Our models, created using empirical 

passenger data from the London Underground, show that the network is not only most vulnerable 

during peak-hours to increased passenger loads, but in addition, the impact disruptions on the 

network change and the highest during peak-hours at certain locations. One of the goals of this 

research was to explore the topological metrics which identify time-dependent critical network 

links. In this study, betweenness has shown to be a valuable indicator of link criticality when 

using our model approach. Considering capacity utilization as an important performance metric, 

disruptions of high-impact non-bridge links showed a small decrease in capacity utilization in 

preceding and succeeding links and a more significant increase in capacity utilization for parallel 

links. This parallel effect was less significant in terms of capacity utilization for non-bridge links 

which have a low betweenness centrality, instead effecting the capacity utilization of 

neighboring links in a more diffuse manner. Finally, we expected to see a spatial change in the 

effect of disruption events over time, but the analysis of our model results did not reflect this 

expectation. The results primed exciting directions for future research, and has given us valuable 

initial insights on time dependency of public transport networks.   

 

  



 

 

Table of contents 
1. Abstract ....................................................................................................................................... 2 

2. Introduction ................................................................................................................................. 4 

2.1 Defining resilience ................................................................................................................ 4 

2.2 Network vulnerability and time-dependence ........................................................................ 5 

2.4 The London Perspective ....................................................................................................... 5 

2.5 Outlining the objectives of this research ............................................................................... 6 

3. Methodology ............................................................................................................................... 7 

3.1 Model paradigm .................................................................................................................... 7 

3.2 Data ....................................................................................................................................... 7 

3.3 Creating the network & estimating link capacity ................................................................. 8 

3.4 Disruption events and n-1 models......................................................................................... 8 

3.5 Estimating performance indicators using the OD-matrix ..................................................... 8 

3.6 Challenges in application of the model ............................................................................... 10 

4.  Results ...................................................................................................................................... 11 

4.1 n-1 network models............................................................................................................. 11 

4.2 Bridges ................................................................................................................................ 11 

4.3 Disruption events and average travel time .......................................................................... 14 

4.4 Disruption events and capacity utilization .......................................................................... 17 

5. Conclusion and discussion: ....................................................................................................... 23 

6. Future research .......................................................................................................................... 26 

Acknowledgements ....................................................................................................................... 27 

7. References ................................................................................................................................. 29 

8. Appendix ................................................................................................................................... 33 

8.1 Data Table ........................................................................................................................... 33 

8.2 Appendix fig 1. ................................................................................................................... 34 

 

 

  



 

 

2. Introduction  

This research aims to give broader insights of time-dependent resilience of public transport 

systems, by analyzing public Transport for London (TFL) data. Understanding the resilience and 

workings of public transportation systems are of key importance to decision-makers such as 

policy-makers, transport authorities and analysts, as it allows for more efficient and effective 

response to disruption events (Berche et al., 2009). The safety and security of public transport 

systems are seen as an important factor by passengers (Smart et al., 2009). Subsequently, 

improvements in network resilience will encourage passengers to make use of available public 

transport systems, which results in various benefits such as decreasing the disparity between 

social groups (Gates et al., 2019; Hernández, 2018) and decreasing emissions (Woodcock et al., 

2007; Geng et al., 2013). 

Public transport systems around the world can be perceived as networks of varying, but great 

complexity (Lin & Ban, 2013). Therefore, understanding the inner workings of these networks 

allows us to better understand the public transport systems as a whole. A starting point is 

defining public transport resilience, as this will give us improved insights on how to measure the 

impact of disruption events.  

2.1 Defining resilience 

Defining and measuring resilience in its many forms is a topic of ongoing discussion in research. 

Gauthier et al. roughly defines resilience as the ability of a network to absorb the impact of a 

disruption event (Gauthier et al., 2018). As this perspective fits well in respects to resilience of a 

public transport systems, we will use it as a broad view of resilience in this paper. However, a 

more deconstructed view on the definition will allow for additional insights.  

A different view of resilience is discussed in a seminal paper by Bruneau et. Al, proposing that 

resilience is shaped by four dimension; robustness, redundancy, resourcefulness and rapidity 

(Bruneau et al., 2003). For the purpose of this discussion, we will focus on two specific 

dimensions of resilience of a public transport system, the robustness and redundancy, as they are 

describing for the current-state of a network. Resourcefulness and rapidity are both valid 

segments of resilience, but focus on future disruptions and problem identification. The focus will 

lie on robustness and redundancy, which have been prominent in resilience and similar-themed 

transport papers (O. Cats, 2016; Jenelius & Cats, 2015; Sullivan et al., 2010; Tahmasseby & van 

Nes, 2007).  

Capacity utilization and passenger journey time are valuable performance indicators of public 

transport performance (Orth et al., 2012; Thompson & Schofield, 2007; Wu et al., 2020). These 

performance estimators can be aligned with the resilience dimensions. The effect of a disruption 

event on capacity utilization can be seen as a factor of redundancy: the extent to which resources 

in a network can satisfy additional functional requirements in the event of a disruption, and the 

impact of disruption events on passenger journey time can be seen as a factor of robustness: the 

degree to which the network can function during a disruption event. By underlining these two 

dimensions and indicators, we are able to more effectively focus on our research goal of 

understanding the impact of disruption events on public transport networks.  

 

 



 

 

2.2 Network vulnerability and time-dependence 

Decision-makers need to make quick and effective decisions when a disruption occurs. By 

measuring network vulnerabilities using the performance indicators, alongside how these change 

over time, we are able to gain insights in time-dependence of network resilience. This approach 

allows decision-makers to create preventive measures, decreasing the impact of disruption events 

on the network. In order to analyze the network vulnerabilities, topological metrics can be 

compared to the performance indicators to determine which nodes and links are most important 

to the resilience of the network (Gauthier et al., 2018). Topological and performance metrics to 

measure criticality vary widely, and a topic which requires more research (Jafino et al., 2020; 

Taylor & D’Este, 2003).  

The timing of a disruption event greatly influences its impact, as network vulnerabilities change 

throughout the day.  Previous research regarding the resilience of public transport networks often 

did not consider time dependence. Critical locations in a network change over time due to the 

dynamic nature of passenger behavior and load. Most importantly, during peak hours, the travel 

demand increases. To what extent a disruption event will affect the performance metrics such as 

travel time and available capacity is therefore dependent on the timing of the disruption event.  

By creating a model which takes into account changing passenger demand throughout the day, 

we will gain knowledge to what extent the resilience is time-dependent. Additionally, analyzing 

changing performance metrics of the network due to a change in passenger demand can give us 

insights to how the critical links and nodes change over the day. Therefore, creating both a time-

dependent model and assessing time-dependent metrics will allow for a better understanding of 

the varying impact of disruptions on public transport networks.  

2.4 The London Perspective 

For over a decade, TFL has actively been releasing data regarding their transport systems. This 

data allows us to accurately model the system behavior of the London Underground. According 

to research by Deloitte, the open-data approach has saved TFL up to £130m a year (Transport for 

London, 2017). It is not hard to grasp why TFL is eager to improve the workings of their 

network; they have a clear economic incentive to decrease the impact of disruption events. For 

instance, passengers will receive a fare refund if their journey is delayed for 15 minutes or more 

(Transport for London, n.d.-b). Furthermore, research, such as this paper, made possible in part 

by the open data initiative, will allow for improved decision making regarding the future of the 

network. TFL Open Data is already being used in over 600 apps, supposedly saving Londoners 

£70m-£95m yearly in saved times and indirect costs (Deloitte, 2017). TFL hosts an API service 

with more than 80 real-time data feeds, additionally, they host static datasets on their website. In 

this research, the focus will be on the latter, as this empirical data will allow for creating a 

realistic network model in order to estimate the impact of disruption events on capacity 

utilization of the London network.  

 

 

 

 

 

  



 

 

2.5 Outlining the objectives of this research  

This research aims to model time-dependent public transport networks in such a way that 

network criticality metrics can be measured over time and the impact of disruption events on 

network capacity can be estimated. In this paper, a reproducible methodology for creating these 

models is proposed. These models will enable a better understanding of the resilience of public 

transport networks and assist in improving the decision-making process regarding the disruption 

of public transport networks. In order quantify the impact of disruption events on the network 

over time, the following research question is considered:  

How can we measure the impact of disruption events on public transport networks over time? 

In order to more specifically target the goals of this research, three sub-questions are formulated. 

The first two questions consider a varying impact of the disruption events at different times of 

the day. We are interested in finding out what the varying impact is on available capacity 

utilization, and average passenger journey time, which are both primary indicators for the 

workings of a public transport network, and are factors that will come under stress during 

disruption events. These two sub-questions are as follows:  

1. How does the timing of a disruption event influence the impact on available capacity?  

2. How does the timing of a disruption event influence accumulative passenger journey 

time? 

We are also interesting in finding a possible relationship between time-dependent metrics and 

critical links in the network, and whether or not these metrics are influenced by the time of the 

day. The final sub-question aims at finding and defining a relation between time-dependent 

metrics and the critical links. 

3. What are the determining time-dependent metrics to identify critical network links?   

By measuring the impact of a disruption event on the both available capacity, as well as the 

passenger journey time, we aim to gain knowledge of both the robustness, as the redundancy of 

the network. The ability to measure the time-dependent network capacity and passenger journey 

time will allow us to asses to which extent the resilience of a network changes over time. 

 

  



 

 

3. Methodology 

3.1 Model paradigm 

In this study of time resilience we recognize the importance of changing capacity buffers and 

passenger travel time, the effect which disruption events have on these factors and how this is 

further influenced over time. We assume that the changing impacts can be investigated using a 

network simulation model where a single mode of transport and discrete non-cascading 

timeframes are considered.  A network model is created in Python 3.7 using the NetworkX 

library (NetworkX, n.d.). The network model consists of edges or links which can be assigned 

link attributes (e.g. capacity, passenger load and link travel time) and station nodes with node 

attributes such as longitude and latitude. We propose a method of estimating capacity utilization 

by first estimating capacity of the links in the network, then assigning passengers to links by 

using trip assignment and origin-destination data from real-life passenger data. Additionally, the 

average travel time of passengers can be calculated by taking the sum of journey times in the 

network and dividing it by the assigned passengers in the network. For each time-band of real 

life passenger data, new capacity utilization and average journey time can be calculated. This 

model, therefore, results in discrete independent and non-cascading estimates of capacity 

utilization and passenger journey time. Finally, a disruption event is simulated by removing a 

single link in the network. This changes the network topology, and thereby influences the trip 

assignment in the network, which has an effect on the desired metrics of capacity utilization and 

passenger journey time. A network model which has a single disrupted link will be referred to as 

an n-1 model in the rest of this paper. N-1 models will be considered for each of the links in the 

network, and capacity utilization and travel time are calculated for each of the discrete time-

steps.  

3.2 Data 

For this research, we used passenger data from TFL (Transport For London) in order to estimate 

passenger loads on the London Underground network. However, our model methodology can be 

applied to other public transport networks using similar data. The passenger data used in the 

research can almost exclusively found on the TFL crowding open data website (Transport for 

London, n.d.-a). The data, published under the name project NUBMAT, contains a static view of 

travel patterns and usage of the TFL railway services. It contains passenger data for Monday-

Thursday, and Friday, Saturday and Sunday separately. The Monday-Thursday data is 

aggregated, so therefore the data from Friday will be considered. The Friday dataset contains two 

datasets which are of importance to our research: the train frequency table is required in order to 

estimate the capacity of the links throughout the day, and the O-D (origin-destination) matrix is 

used to assign passengers to links using trip-assignment. An O-D Matrix shows the amount of 

passengers traveling between two stations during a certain time period, and is therefore 

representative for the trips passengers have taken in the network. The TFL O-D Matrix contains 

8 discrete time-steps for which passenger journeys are shown, namely:  

['Morning (0500-0700)', 'AM Peak (0700-1000)', ‘Inter-Peak (1000-1600)', 'PM Peak 
(1600-1900)', 'Evening (1900-2200)', 'Late (2200-0030)', 'Night (0030-0300)', 'Early 
(0300-0500)'] 

Since these are the time-slots used in the source data, we will be using the same time-slots for the 

analysis of time dependency of network resilience. Notice that not all lengths of the time-slots 

are identical; the Morning timeslot is two hours, whereas the Inter-peak timeslot is 6. Lastly, an 



 

 

external source was used to create the London Underground network graph. This graph data was 

compared to TFL data in order to remove discrepancies between the data sources, such as station 

names that did not match. Appendix 8.1 in the attachment shows the data used for this paper and 

their respective sources.  

3.3 Creating the network & estimating link capacity 

After creating the initial London Underground Graph, discrepancies were found between the 

TFL dataset and the graph dataset. In order to remove these discrepancies, the graph dataset was 

cleaned by filtering stations which were not found in the TFL dataset, or visa-versa, and 

changing the names to match accordingly. Once the graph data was complete, we could now use 

TFL data in order to estimate the link attributes: link capacity and passenger load. Link capacity 

was estimated by taking the train frequency and multiplying it by the estimated capacity of a 

train for each link. Information regarding the maximum capacity of trains was gathered from the 

Rolling Stock information sheet (appendix 8.1). Link capacity was estimated for each of the 8 

timeslots. In the Late and Night timeslots, the link frequency was often very low, causing issues 

in various other parts of the modeling, such as estimating capacity. Therefore, if a link showed a 

capacity of 0 over the full duration of a timeslot, we have chosen to recursively take the average 

of the capacity of neighboring links. In effect, this has slightly increased overall capacity of the 

network, especially in the Late and Night timeslots.  

3.4 Disruption events and n-1 models 

Having created the network graph and estimated the link capacity, the simulation of a disruption 

event will be considered. A disruption event is simulated by removing a single edge from the 

network graph, and re-estimating passenger loads. By removing an edge in the network, certain 

paths are no longer available in the network, causing certain passengers to have to re-route in 

order to reach their destination. An n-1 model (a model containing a single disrupted link) was 

created for each of the 352 links in the network. Each n-1 model considerers each of the 8 time-

steps of the TFL datasets. In certain cases, the disrupting a link will cause the network to be 

disconnected, and there will be no shortest paths between certain O-D pairs. In this case, the 

passengers are not added to the link loads, and are considered disconnected from the network. As 

will be discussed in the results section, completely disconnecting certain passengers from the 

network has a significant effect on the main criticality metrics, capacity utilization and average 

travel time. For each of the n-1 models, passenger loads, capacity utilization, and average 

journey time are estimated.  

3.5 Estimating performance indicators using the OD-matrix  

Using the TFL O-D matrix, we are able to estimate passenger loads on links by determining 

which paths passengers take for each origin-destination pair. Dijkstra’s shortest path algorithm is 

used in order to calculate a shortest path table for each of the O-D pairs. A shortest path table 

was created for each of the n-1 models, as disrupting an edge in the network will cause a change 

in the shortest paths for certain O-D pairs. This form of trip assignment is an all-or-nothing 

approach similar to prior research (Gauthier et al., 2018). We have considered an approach 

where n shortest paths would be considered for trip assignment, but the singular approach 

requires much less computation while producing similar results. One of the key assumptions 

using this approach is that passengers can be assigned to links regardless if they are at peak 

capacity or not. This means that capacity utilization might exceed 100% in certain situations, 



 

 

especially when a disruption event puts increased passenger load stress on certain parts of the 

network.  

Using the shortest paths table, passenger loads are added to each of the links passengers pass 

over in the in the shortest path of the O-D Pair. This is done for each n-1 model, for each of the 8 

time steps. Each n-1 model now contain both the capacity of the links, as well as the estimated 

passenger load for each link as attributes.  Using these values, capacity utilization is calculated 

by dividing the estimated passenger load by the capacity of the link.  

Capacity utilization Cu(e,t), for edge e on timeslot t can be calculated for each edge by dividing 

the capacity C(e,t) by the link load L(e,t) of that edge: 

(1) 

By keeping track of the amount of passengers traveling over the network for each timeslot, and 

taking into account passengers which might be disconnected, average travel time can be 

calculated.The average travel-time of passengers is calculated by taking the sum of all 

passengers traveling over an edge e, multiplied by the time it takes to travel over that link, 

divided by all passengers traveling in the network: 

   (2) 

Where L(e,t)  is the link load for link e at timeslot t, w(e) time to travel over said edge (the 

‘weight’), and P(t) is the sum of traveling passengers in the network at the timeslot t.   

Lastly, betweenness centrality is used as a topological metric and calculated for each of the links 

in the network. Betweennness centrality is a topological metric we are interested in due to the 

fact that it based on shortest paths, similar to the trip assignment approach. Betweeness centrality 

of an edge shows the sum of the fraction of shortest paths running through the edge:  

 (3) 

where V is the set of nodes, σ(o,d) is the number of shortest (o,d)-paths, and σ(o,d|e) is the 

number of those paths passing through edge e (Betweenness - NetworkX 1.9, n.d.).   

 

 

 

 



 

 

3.6 Challenges in application of the model  

A potential challenge when running the models is that the models get quite computationally 

heavy. For instance, trip assignment was calculated for each of the 352 links, for each of the 

~68k O-D pairs, for each of the 8 timeslots. Even when optimizing the time complexity of the 

algorithms, this was a computationally heavy task. Certain tasks could be split up: estimating 

shortests paths for the O-D pairs for the n-1 models could be calculated prior to trip assignment. 

We chose to upload the pre-calculated shortests paths, network models and n-1 edges to a virtual 

machine on AWS which allowed for faster computations. Since running an n-1 model is an 

independent calculation event, multithreading was used in order to improve the calculation 

speed. As the model results are saved on the networkX graph object as link attributes, the model 

results could be saved as a ‘picked’ data format. The final step was pulling the link attributes 

from the network models in order to analyze the data. We used Pandas in order to format the 

dataframes and perform exploratory analysis on the data. The dataframes were later exported, 

and visualizations were made in Tableau.  

 

  



 

 

4.  Results 

In order to measure the impact of disruption events on public transport networks over time, we 

will start by analyzing the results from a topological perspective. The undisrupted network 

provides valuable insights over the network behavior over time without major difficulties, whilst 

the disrupted networks will give us insights on the various changing impacts of disrupting edges 

over time on the network. Where possible, results are visualized in a spider map showcasing edge 

attributes over a map of the London Underground network.  

4.1 n-1 network models 

The majority of the analysis focuses on changing performance metrics derived from disrupting a 

single link in the network, which we call an n-1 network model. An n-1 network model disrupts 

a single link by effectively removing said link from the network graph. Using the O-D matrix, 

passengers are then re-assigned to the links, by recalculating their optimal path to their 

destination using Dijkstra’s shortest path algorithm. Passengers are then assigned to their 

alternative routes, similarly how passengers would be re-routed in real-life disruption events, 

assuming that that they will still use the London Underground system and not a different mode of 

transport. 

4.2 Bridges 

In some cases, certain passengers are no longer able to be assigned to links, because no new 

shortest path is found. This is in the case that the disrupted link is a bridge. Removal of a bridge 

in the network increases the amount of connected components, effectively creating two 

(sub)graphs. Consequently, if passengers would travel over a bridge-link, and if that link is 

disrupted, these passengers are now disconnected from the graph. Out of 352 links, roughly 43% 

are bridges in the network. 

FIG 1. Bridges in the London Underground network. Orange signifies a bridge-link, blue signifies a 

non-bridge link.  

  



 

 

Disconnected passengers in an n-1 model caused logical, but unforeseen consequences. In real-

life situations, disconnected passengers could choose alternative modes of transport to ‘bridge 

the gap’ in the network, and still partake in traveling throughout the remaining undisrupted part 

in the network. However, since the model is single-modal, this is not possible for passengers in 

our model. Effectively, this influences capacity utilization and cumulative travel time in 

sometimes counterintuitive and unpredictable manners. For instance, one would expect that a 

decrease in capacity utilization would be good for resilience in the network, however, 

disconnecting passenger logically decreases capacity utilization. In order to show this potential 

counterintuitive behavior, figure 2 shows the relationship between the change of the average 

capacity utilization of all links in an n-1 disruption model, and the amount of disrupted 

passengers.  

 

FIG 2. Relationship between the change in mean capacity utilization and the amount of disconnected 

passengers. Each dot represents an n-1 model for a disrupted link in the network during the inter-peak 

time-band. The y-axis displays the change in the average capacity utilization of all other links in the 

disrupted n-1 model. Notice that the range of the y-axis on the graphs is not identical. Bridges are shown 

on the left, non-bridges on the right. Data is used from the ‘Inter-Peak’ timeslot.  

  



 

 

Figure 2 shows that disrupting a bridge link causes additional passengers to be disconnected, but 

disrupting a non-bridge link does not. The reason that 5583 passengers are disconnected in the n-

1 models for non-bridges is that in the base (non-disrupted) model, these passengers were not 

able to be assigned to the network due to a discrepancy between the NetworkX graph and the 

TFL O-D data. Specifically, Heathrow Terminal 5 was not added to the model until the last 

revision. In a later version of the model, this is fixed, however, the current results section needs 

to be updated to reflect this (for purposes of the BEP, this is left out of the scope).  In addition to 

the finding that only disrupting bridges causes passengers to be disconnected, we observe that 

there seems to be a relationship between the amount of disconnected passengers and the change 

in the average capacity utilization of the network. Similar results can be seen if the amount of 

disconnected passengers is plotted against the average travel-time per passenger of the n-1 model 

(appendix 8.2). Therefore, we should take into account bridges as topological metric of 

importance when analyzing the performance metrics capacity utilization and average travel time.  

  



 

 

4.3 Disruption events and average travel time 

When analyzing effect of timing of a disruption event on travel time, we should take into account 

the influence of bridges on emergent network behavior for the n-1 models. Initially, we were 

interested in the effect of disruption events on the cumulative travel time in the network. 

However, as we have observed, bridges disconnect passengers from the network. As an 

increasing amount of passengers are disconnected, the cumulative travel time decreases in the 

network, skewing the comparison to the cumulative travel time of the base-network. This results 

in the cumulative travel time not being a reliable indicator of the impact of disruption events on 

the network, as cumulative travel time is highly dependent on the amount of disconnected 

passengers. Instead, we analyze the influence of disruption events on the average travel time, as 

average travel time takes into account the number of disconnected passengers.  

 

FIG 3. Relationship between the average and change in mean travel time of n-1 models and the timing 

of the disruption event. Average travel-time of passengers in n-1 models, and change of average travel 

time compared the undisrupted model. The betweenness metric is calculated for the disrupted edge in the 

n-1 model. The color scale is right skewed to represent the betweenness distribution.  



 

 

FIG 4. Impact of disrupting a link on the average travel time, summed over each timeslot.  

Figure 3 shows the changing average travel-time in the n-1 models throughout the day, as well as 

the change in average travel time of the n-1 models as compared to the undisrupted network. We 

observe a reversal in the impact on average travel time between bridges and non-bridges. A 

possible reason for this is that, on average, passengers who would travel over a bridges would 

travel further in the network. Disconnecting these passengers from the network, thereby 

removing them from the average travel time equation, would logically result in a decrease. On 

the other hand, disrupting a non-bridge link would not result in disconnecting any passengers as 

seen in Figure 2. Instead, certain passengers will have to re-route in order to reach their 

destination, increasing average travel time. Comparing Figure 1 and Figure 4 shows the 

relationship between bridges and non-bridges, and the reversal of the impact of disruption events 

on average travel time.  

Notice that for figure 3 the center of the betweenness color range is skewed, as the normalized 

values are right-skewed. We can observe that when disrupting a non-bridge link with high 

betweenness, the impact on the average travel time is generally higher. With a higher 

betweenness value, a larger fraction of the shortest paths in the network travel through that link 

(equation (3)). Disrupting such a link with high betweenness would mean that, on average, more 

passengers would have to re-route, causing a higher increase in average travel time than lower 

betweenness links.   

  



 

 

The timing of a disruption event and the impact of the event on the average travel time of 

passengers in the network does not seem to have a strong relationship. However, we propose a 

logical explanation. The way the model assigns passengers does not take into account a 

maximum capacity, instead the model assigns passengers wherever possible, without limiting 

assignment after exceeding capacity. Therefore, for a passenger to be rerouted in our models, it is 

irrelevant for the passenger’s journey time if the disruption happens in peak hours or in off-peak 

hours. This might explain an independency between time and the impact of disruption events on 

the average travel time in the network. Future research could take into account maximum 

capacity as a boundary condition for trip assignment to gain a broader insight on the impact of 

disruptions on average travel time in public transport networks.  

Interestingly, we observe that the average travel time is highest in the morning hours. This might 

be explained by passengers which decide to travel early on in the morning, have to come from 

further in the network to reach their destination (e.g. work in the center of the city). However, 

more detailed passenger and network data is required to explain this. For instance, Morning 

passenger destinations could be compared to points-of-interest around the network to assess their 

purpose of travel.  

 

  



 

 

4.4 Disruption events and capacity utilization 

For the study of resilience of public transport networks, capacity utilization is a highly important 

performance indicator. Once a metro system goes over capacity, it results in various negative 

side effects such as increased waiting times and decreased passenger satisfaction. First, we will 

consider the estimated capacity utilization of the undisrupted network.  

 

FIG 5. Resilience metrics in the undisrupted London Underground network after trip assignment using 

the O-D matrix from TFL. Map based on longitude and latitude of the edges, broken down for 

each timeslot. Color shows details about the metrics.  

Figure 5 provides a picture of the network model in an undisrupted state, showing the relationship 

between capacity, passenger load and capacity utilization broken down for each of the timeslots. Capacity 

utilization is calculated using passenger load and capacity as shown in equation 1. On the right, a table 

show the summed passenger load on all edges during each of the timeslots. Notice that the time duration 

changes between timeslots (e.g., PM and AM peak are 3 hours long, whereas inter-peak is 6 hours long). 

This explains the relative high number of summed passenger load for the inter-peak timeslot.   

The resilience of the public transport network is partly dependent on the excess capacity (the resource 

buffer) and to what extent passengers are able to use this excess capacity to reach their destination after a 

disruption event. When a disruption event takes place, taking into account passengers are still able to 



 

 

travel to their destination, they will have to route around the disrupted link. This causes the neighboring 

links to have an increased passenger load. We can observe in Figure 5 that in the center of the network, 

the capacity is already reaching its limits. On the other hand, many of the outer links especially, over 

various timeslots, show a low capacity utilization, which might indicate a capability to dampen the 

negative effects of a disruption event should the link come under increased passenger load. Another 

useful observation is that the capacity at Night and Early reaches very low points, indicated by an orange 

color. This will have an influence on the estimates of changing capacity utilization after a disruption event 

occurs. A very low initial capacity might cause an increased impact when a disruption event occurs.  

 

Table 1. Disrupted edges used in analysis 

Table 1 lists 4 disrupted edges which will be considered for analysis below. The reason these bridges 

were selected is because the bridges Canary Wharf LU – Canada Water and  Preston Road – Wembley 

Park show a high summed positive impact when disrupted.  Green Park – Piccadilly Circus show a very 

low summed impact (the positive increase in capacity utilization is very close to the summed negative 

increase in capacity utilization), and the betweenness value is quite low. Analyzing this edge gives us 

insights in the disruption of a possible ‘low-impact’ edge.  Lastly, Clapham North – Stockwell is a bridge 

link with the highest negative impact (decrease-in) capacity utilization in the network.  



 

 

FIG 6. Effect of disrupting link Canary Wharf – Canada Water and link Preston Road – Wembley Park on the change in capacity utilization of 

the remaining links in the network, as compared to the undisrupted model. Map based on longitude and latitude of the edges, broken down by 

Timeslot.  Color shows details about the change in capacity utilization. The tables on the right details the sum of the change in capacity utilization 

over the other links, per timeslot.  

 



 

 

When assessing the time dependency of high impact links, based on the sum of capacity utilization 

change, we can observe that capacity utilization increases dramatically over neighboring links to the 

disrupted links, especially during peak-hours. While we have previously seen that time influences the 

capacity utilization of an undisrupted network, it becomes apparent that the significance of the disruption 

impact is also time-dependent.  

In the case of the disruption of the non-bridge link Canary Warf – Canada Water, we observe that the 

links following and preceding the disrupted link in a path have a decreased passenger utilization, whereas 

the links that are parallel to the disrupted links have increased passenger utilization. This network 

behavior is possibly explained by the fact that passengers who were to travel over the disrupted link were 

likely to also travel over the preceding and succeeding links. Therefore, if passengers are no longer able 

to cross the ‘gap’ which is created by the disruption event (again, assuming a single-modal network), they 

will not travel over a certain amount of the links in their original path including the disrupted links. 

Instead, as passenger re-route, the strain on the network is diverted to an alternative path which is parallel 

to the path containing the disrupted link.  

A similar effect is seen in the disruption of non-bridge link Preston Road – Wembley Park. Just as with 

the previous example, disrupting this link causes preceding and succeeding links to decrease in capacity 

utilization, and a parallel path is put under more strain. Similarly, the disturbance of the disruption event 

is highest during the AM and PM peak hours. The capacity utilization during the Night and Early 

timeslots does not seem to change, which is most likely caused by the extremely low capacity of certain 

parts in the network during these time-slots as seen in figure 6 on the left. We need to pinpoint the exact 

cause of this by re-running the model. This is outside of the scope of the BEP and will be one of the focus 

points for the research paper. 



 

 

FIG 7. Effect of disrupting bridge link Clapham North - Stockwell 

on the change in capacity utilization of the remaining links in the 

network, as compared to the undisrupted model. Map based on 

longitude and latitude of the edges, broken down by Timeslot.  Color 

shows details about the change in capacity utilization. The table on 

the right details the sum of the change in capacity utilization over the 

other links, per timeslot.  

 

 

FIG 8. Effect of disrupting link Green Park – Piccadilly Circus on 

the change in capacity utilization of the remaining links in the 

network, as compared to the undisrupted model. Map based on 

longitude and latitude of the edges, broken down by Timeslot.  Color 

shows details about the change in capacity utilization. Map based on 

longitude and latitude of the edges, broken down by Timeslot.  Color 

shows details about the change in capacity utilization. 

 



 

 

 

Disrupting the non-bridge link Green Park – Piccadilly Circus (figure 8) results in a relatively low 

summed impact in regards of capacity utilization change as compared to the base network. Interestingly, 

where we previously saw a comparatively strict increase in capacity utilization in a parallel path, the 

strain of the disruption event now seems to be diffused over the neighboring links. This might be 

explained by the low betweenness centrality of the link. Possibly, passengers passing through this link are 

unlikely to come from origins far away from the disrupted link, as the amount of shortest paths running 

through the link is quite low. This would explain the more diffuse manner of increased passenger load 

strain on neighboring links, as opposed to the more parallel strain seen in the more impactful links (figure 

7).  

Finally, the disruption of bridge link Clapham North – Stockwell has a vastly different impact on the 

network as the disruption of the non-bridge links we have observed earlier. As a bridge link, this link 

disconnects passengers from the network, as seen in the bar graph in the top right of the figure. The 

impact of the disruption event is mostly a decrease in capacity utilization – passengers which are not able 

to ‘cross the gap’ due to the single modal approach of the network model, no longer travel in the network 

decreasing passenger load and capacity utilization. The higher the increase of disconnected passengers, 

the higher the decrease of  

In order construct more robust networks, and design more resilient public transport network policy, policy 

makers should take into account emerging network behavior for disruption over time, both for low-impact 

and high impact links. For high impact links, the question should be asked whether the impact of the 

increased strain on a parallel path be moderated, or the focus should instead lie on allowing passengers to 

‘cross the gap’ in a disrupted network path. For links less critical in network vulnerability, an element for 

further research is finding out how the strain of the disruption event is spread over neighboring links, and 

in what way this issue can be addressed. Considering bridge links especially, giving passengers viable 

alternatives to reach their destination is key, especially during the critical peak-hours.  

 

 

  

 

  



 

 

5. Conclusion and discussion:  

Transportation network resilience has been studied previously using either graph theory and 

applications (Berche et al., 2009) or traffic network modelling (Ganin et al., 2017). While the 

latter is data intensive and computationally expensive, the former approaches rely only on the 

structure of the network and missing the critical information on the impact of time dependent 

variables on the network. It is clear that the literature is lack of new methods and approaches that 

lie between the two. Therefore, the motivation behind this study is to explore the importance of 

disruption time in public transport network resilience, and how to measure the changing impact 

over time.  

We have proposed a methodology to model a non-cascading time-dependent network model, 

estimating changing passenger loads in a public transport network. Our models, created using 

empirical passenger data from the London Underground, show that the network is not only most 

vulnerable during peak-hours to increased passenger loads, but in addition, the impact 

disruptions on the network change and the highest during peak-hours at certain locations. 

Accordingly, the importance of time should not be disregarded as an important piece in the 

complex puzzle of understanding public transport network vulnerability and resilience. 

One important finding of the study is that the metrics need to be identified carefully to assess the 

transportation network resilience. In this model, two performance indicators are identified to 

evaluate the impacts of disruptions: average travel time, capacity utilization and number of 

disconnected passengers. In addition, we considered two key topological metrics; bridges and 

betweennes centrality. Due in part to the modelling assumption of using a single mode of 

transport, one topological attribute stood out as highly impactful in our models even more than 

the widely utilized metrics such as betweennes;  disrupted edge being a bridge or not. Since 

passengers were unable to ‘jump the gap’ once a bridge link is disrupted, it caused the network to 

be divided into two sub-networks. The passengers which would initially route over those links 

could no longer partake in their journeys throughout the network. Roughly 43% of the 352 links 

in the network are bridges.  

The performance indicators are key in gauging the impact of disruption events, journey time and 

capacity utilization, showed a correlation to the number of disconnected passengers in the 

network. This caused unexpected, or counterintuitive results in cases where the bridge attribute 

was not taken into consideration. For instance, disconnecting a bridge link would in some cases 

decrease capacity utilization as well as average journey time. Although these seem like positive 

effects, until the disconnected passengers is taken into account. This is due to the fact that the 

model does not allow multiple modes of transport and the capacity utilization is low as 

disruptions results in the disconnected passengers.  Modelling multiple modes of transport would 

possibly allow passengers to ‘bridge the gap’ over disrupted links, and would be a great 

opportunity for future research in time-resilience. 

We have estimated the average travel time of passengers (equation (2)) after disrupting the 

network, taking into account the skewing effect of the bridge link attribute on said metric. In our 

network model, the impact on average travel-time seems largely independent to the timing of the 

disruption. In general, disrupting bridge links showed a decrease in average travel-time, which is 

possibly explained by the relative distance of bridge links from the center of the network. The 

reason being that disconnected passengers would travel, on average, from further away. Hence, 



 

 

removing these from the average travel time equation result in a decrease. This is again a 

disadvantage of not having a multi modal transportation network, as we assumed that the 

disrupted passengers are removed from the network. 

On the other hand, the disruption of a non-bridge link showed an increase in average travel time, 

a result which is not unexpected as certain passengers would have to re-route in order reach their 

destination. Interestingly, taking into account a classic network metric, betweenness centrality 

(equation (3)), our results show that there is a positive relationship between betweenness 

centrality and the increase in average travel-time, assuming a single mode of transport. In other 

words, betweenness centrality successfully represents the critical locations on the network if the 

link is also a non-bridge.  

One of the goals of this research is to explore the topological metrics which identify time-

dependent critical network links. In this study, betweenness has shown to be a valuable indicator 

of link criticality when using our n-1 model approach. We assume the reason that betweenness 

been a good indicator of the relative importance of (mostly non-bridge) links in the network, is 

due to the fact that this is a metric based on the fraction of shortest paths running through an 

edge, and passengers are assigned using shortest-paths. However, it is possible other metrics 

might prove more reliable indicators in different modelling approaches, such as agent based 

modeling where individual passenger behavior becomes more important, or dynamic flow 

models.  

Additionally, certain metrics might be able to explain dynamic criticality behavior of public 

transport networks. For instance, certain features of a link might make them resilient during peak 

hours, but vulnerable during off-peak hours, or visa-versa. Investigating what causes 

vulnerability metrics to change over time, and determining if these causes can be tied to 

indicators might show to be a powerful tool in tackling time-dependency in public transport 

resilience. We anticipate that future research connecting the impact of time-dependent criticality 

metrics such as average travel-time and capacity utilization, with various topological metrics will 

bring promising new insights.  

The results of capacity utilization in the undisrupted network suggest that an undisrupted 

network is already vulnerable during peak-hours, as capacity utilization reaches high levels 

which negatively effects redundancy and network resilience. Disruptions of high-impact non-

bridge links showed a small decrease in capacity utilization in preceding and succeeding links 

and a more significant increase in capacity utilization for parallel links. Parallel links allow a 

large number of passengers to reach their destination when re-routing is required due to the 

disruption event. This illustrates the importance of redundant routes for the resilience of 

networks.  

This parallel effect was less significant in terms of capacity utilization for non-bridge links which 

have a low betweenness centrality, instead effecting the capacity utilization of neighboring links 

in a more diffuse manner. A more diffuse impact means the neighboring links are able to share 

the increased passenger load. Therefore, a moderate link capacity redundancy of neighboring 

links surrounding low-impact, low-betweenness links might be a sufficient measure to improve 

network resilience.  



 

 

The performance indicator of disconnected passengers, illustrates the effects disruption events 

have when disrupting a bridge link. A high amount of disconnected passengers shows a decrease 

in capacity utilization in subsequent links, especially during peak hours. Therefore, for both 

bridges and non-bridges, the impact of disruption events were most significant during peak 

hours.  

We expected to see a spatial change in the effect of disruption events over time, but the analysis 

of our model results did not reflect this expectation. Spatial differences after disruption events 

seem to not be a result of time, but rather one of our definition of link criticality- betweennes 

value. Possibly, different methods for measuring time resilience in public transport resilience 

will give new insights in spatial changes of disruption impacts throughout the day.  

 

  



 

 

6. Future research  

This research has given us initial insights on the time dependency of public transport network 

resilience. Excitingly, it has also primed new opportunities for great potential directions for 

future research. The most promising angles are as follows:  

 Taking into account multiple modes of transport will allow for passengers to bridge gaps 

which are created by potential disruption events. The performance metrics will be 

influenced by a multi-model model, as we expect the impact of disrupting bridge links to 

be partially negated by allowing passengers to cross the gap using a different mode of 

transport. Additionally, potential new behavior will emerge from models considering 

multiple modes of transport. For instance, dependent on the data used, a distinction could 

be made between passengers traveling using a single mode of transport, or multiple.  

 Changing the means of trip assignment. In our models, we assigned passengers by 

determining the shortest path between an origin-destination pair from the O-D matrix, 

using all-or-nothing assignment.. Since certain links on the outer edges of the network 

have a low betweenness centrality, their passenger loads might be estimated to be lower 

than reality, and visa-versa for high betweenness links. Alternative forms of (all-or-

nothing) trip assignment will result in different model behavior, which might lead to new 

insights.  

 Considering capacity utilization, setting a maximum capacity utilization as a boundary 

condition for passenger travel will allow for measuring a more realistic impact of 

disruption events. In real-life situations, passengers are not able to travel in full trains, 

and will have to wait on the platform, choose a different mode of transport or even 

reneging.  

 Decreasing the length of the time-steps might allow for more detailed model behavior. 

For instance, with smaller time-steps, one might consider the cascading effect of a 

disruption event, and how for long the disruption is felt throughout the day. Additionally, 

this model approach will allow for a dynamic disruption length, or allow for partial 

degradation of link capacity instead of complete link failure similar to prior research 

(Oded Cats & Jenelius, 2018), while still considering the importance of time.  

 Our model approach takes into account two main performance indicators, average travel 

time and capacity utilization. By taking into account more passenger metrics such utility 

of travel or cognitive burden, estimating the effect of a disruption event on passengers 

can be improved. We expect the impact of disruptions on passengers to change 

throughout the day. For instance, a passenger going to work might experience a more 

substantial impact on their utility of travel compared to a passenger going home, while 

other performance metrics stay the same.  

 Similarly to taking into account more passenger metrics, more topological metrics can 

also be considered. This would be especially interesting to see if additional metrics can 

explain time dependency of link criticality and vulnerability.  

 Lastly, the improved understanding of changing resilience over time allows researchers to 

explore design strategies to improve resilience of public transport systems. 
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8.1 Data Table  
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[6] http://markdunne.github.io/public/london_tube/london.connections.csv 
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